organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Dimethylanilinium chloride monohydrate

Sofiane Bouacida,^{a,b}* Ratiba Belhouas,^c Habiba Kechout,^b Hocine Merazig^b and Patricia Bénard-Rocherullé^d

^aDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béiaia, Route Targua Ouzmour, 06000 Béiaia, Algeria, ^bLaboratoire de Chimie Moléculaire du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, Constantine 25000, Algeria, ^cFaculté de Chimie, USTHB, BP32, El-Alia, Bab-Ezzouar, Alger, Algeria, and ^dSciences Chimiques de Rennes (UMR CNRS 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 11 February 2009; accepted 19 February 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.059; wR factor = 0.109; data-to-parameter ratio = 20.0.

The crystal structure of the title compound, $C_8H_{12}N^+ \cdot Cl^-$.-H₂O, consists of hydrophobic layers of dimethylanilinium cations parallel to the bc plane alternated by hydrophilic layers of chloride anions and water molecules. The layers are linked by N-H···O and N-H···Cl hydrogen bonds involving the ammonium groups of the cations. The cohesion of the ionic structure is further stabilized by O-H···Cl hydrogenbonding interactions.

Related literature

For crystal structures containing the dimethylanilinium cation, see: Bouacida (2008); Singh et al. (2002); Singh et al. (1995a,b); Linden et al. (1995); Fábry et al. (2001, 2002). For the crystal structures of related protonated amines, see: Bouacida et al. (2005a,b,c, 2006, 2007); Benslimane et al. (2007); Rademeyer (2004a,b).

Experimental

Crystal data

$C_8H_{12}N^+ \cdot Cl^- \cdot H_2O$	
$M_r = 175.65$	
Orthorhombic, Pca2 ₁	
a = 18.230 (18) Å	
b = 6.7854 (14) Å	
c = 7.916 (2) Å	

Data collection

Enraf–Nonius KappaCCD
diffractometer
Absorption correction: none
10115 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of
$wR(F^2) = 0.109$	independent and constrained
S = 1.15	refinement
2181 reflections	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
109 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983)
	976 Friedel pairs
	Flack parameter: 0.01 (11)

 $V = 979.2 (10) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^{-1}$

 $0.1 \times 0.04 \times 0.02 \ \mathrm{mm}$

2181 independent reflections 1403 reflections with $I > 2\sigma(I)$

Z = 4

T = 295 K

 $R_{\rm int} = 0.078$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1W$ $N1 - H1B \cdots Cl1^{i}$	0.89 0.89	1.87 2.30	2.754 (5) 3.177 (4)	174 167
$N1 - H1C \cdot \cdot \cdot Cl1^{ii}$	0.89	2.31	3.181 (4)	167
$O1W-H1W\cdots Cl1$ $O1W-H2W\cdots Cl1^{iii}$	0.80 (6) 0.81 (5)	2.43 (6) 2.36 (5)	3.217 (5) 3.174 (5)	174 (7) 176 (2)

Symmetry codes: (i) $-x, -y + 1, z - \frac{1}{2}$; (ii) x, y, z - 1; (iii) $-x, -y + 2, z - \frac{1}{2}$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); and SCALEPACK program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for the data collection facilities. SB thanks Université A. Mira de Béjaia, Algéria, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2296).

References

- Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, 03682-03683.
- Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153-m1155.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61. m2072-m2074.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61. m577-m579.

- Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, 0838–0840.
- Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.
- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105-o107.
- Fábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058–o1060. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Linden, A., James, B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317-2320.

- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rademeyer, M. (2004a). Acta Cryst. C60, m55-m56.
- Rademeyer, M. (2004b). Acta Cryst. E60, m345-m347.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995a). Thermochim. Acta, 262,
- 117-127. Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995b). J. Energetic Mater. 13, 141-156.
- Singh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681–691.

supplementary materials

Acta Cryst. (2009). E65, o628-o629 [doi:10.1107/S1600536809006072]

3,4-Dimethylanilinium chloride monohydrate

S. Bouacida, R. Belhouas, H. Kechout, H. Merazig and P. Bénard-Rocherullé

Comment

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Bouacida *et al.*, 2005*a*,b,c; Bouacida *et al.*, 2006; Benslimane *et al.*, 2007; Bouacida *et al.*, 2007). Structures containing the dimethylanilinium cation have been already reported with tin chloride (Bouacida, 2008), sulfate (Singh *et al.*, 2002), nitrate and perchlorate (Singh *et al.*, 1995*a*,b), chloride (Linden *et al.*, 1995), and dihydrogenphosphate (Fabry *et al.*, 2001; Fábry *et al.*, 2002).

The molecular structure of the title compound is illustrated in Fig. 1. A 11 bond distances and angles are within the ranges of accepted values. The amino N atom is protonated as in other aminoacids (Bouacida *et al.*, 2006; Rademeyer 2004*a*,b). A diagram of the layered crystal packing of title compound is shown in Fig. 2, in which the cations are arranged to form zigzag layers parallel the *ab* plane, with the chloride ions and water molecules located between these layers. The structure may be also described as formed by hydrophobic layers parallel to the *bc* plane of dimethylanilinium cations alternated by hydrophilic layers of chloride anions and water molecules. In this structure, three types of classical hydrogen bonds are observed, *viz.* cation–anion, cation–water and water–anion (Fig. 3, Table 1). All three ammonium H atoms are involved in hydrogen bonds. These interactions link the molecules within the layers and also link the layers together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

Experimental

An aqueous solution of $SnCl_2.2H_2O(1 \text{ mmol})$ and 3,4-dimethylaniline (2 mmol) in hydrochloric acid was slowly evaporated to dryness for two weeks. White single crystals of the title compound were carefully isolated under polarizing microscope for X-ray diffraction analysis

Refinement

The water H atoms were located in a difference Fourier map and refined isotropically, with $U_{iso}(H) = 1.25(O)$. All other H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.89Å and $U_{iso}(H) = 1.2 U_{eq}(C, N)$ or 1.5 $U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The structure of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A diagram of the layered crystal packing in the title comound, viewed down the *a* axis.

Fig. 3. Crystal packing of the title compound viewed down the b axis. H bonds are shown as dashed lines.

3,4-Dimethylanilinium chloride monohydrate

Crystal data

$C_8H_{12}N^+ \cdot Cl^- \cdot H_2O$	$F_{000} = 376$
$M_r = 175.65$	$D_{\rm x} = 1.191 {\rm Mg m}^{-3}$
Orthorhombic, Pca2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 9401 reflections
a = 18.230 (18) Å	$\theta = 3.7 - 27.5^{\circ}$
b = 6.7854 (14) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 7.916 (2) Å	T = 295 K
$V = 979.2 (10) \text{ Å}^3$	Stalk, white
Z = 4	$0.1\times0.04\times0.02~mm$
Data collection	
Enraf–Nonius KappaCCD	$R_{\rm int} = 0.078$

diffractometer	$R_{\rm int} = 0.078$
T = 295 K	$\theta_{max} = 27.5^{\circ}$
CCD rotation images, thick slices scans	$\theta_{\min} = 3.7^{\circ}$
Absorption correction: none	$h = -23 \rightarrow 23$
10115 measured reflections	$k = -8 \rightarrow 8$
2181 independent reflections	$l = -10 \rightarrow 9$
1403 reflections with $I > 2\sigma(I)$	

Refinement

H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_0^2) + (0.0307P)^2 + 0.3106P]$ where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{max} < 0.001$
$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

2181 reflections	Extinction correction: none
109 parameters	Absolute structure: Flack (1983), 976 Friedel pairs
1 restraint	Flack parameter: 0.01 (11)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.06494 (14)	0.5513 (4)	0.2268 (4)	0.0433 (10)
C1	0.14146 (17)	0.4809 (5)	0.2159 (4)	0.0395 (11)
C2	0.1556 (2)	0.3036 (6)	0.1426 (5)	0.0447 (12)
C3	0.22856 (19)	0.2362 (5)	0.1269 (4)	0.0430 (13)
C4	0.28449 (18)	0.3555 (5)	0.1893 (5)	0.0444 (11)
C5	0.2677 (2)	0.5332 (6)	0.2641 (5)	0.0517 (14)
C6	0.1959 (2)	0.5966 (5)	0.2776 (5)	0.0467 (12)
C7	0.2432 (3)	0.0413 (6)	0.0454 (6)	0.0670 (19)
C8	0.3636 (2)	0.2894 (7)	0.1744 (7)	0.0693 (16)
O1W	0.0447 (3)	0.8297 (5)	0.4757 (4)	0.0818 (13)
Cl1	0.04002 (5)	0.77733 (12)	0.87943 (11)	0.0507 (3)
H1A	0.06154	0.64300	0.30678	0.0650*
H1B	0.03559	0.45076	0.25217	0.0650*
H1C	0.05158	0.60253	0.12795	0.0650*
H2	0.11712	0.22655	0.10264	0.0534*
Н5	0.30525	0.61175	0.30623	0.0620*
H6	0.18505	0.71675	0.32834	0.0559*
H7A	0.27619	0.05896	-0.04794	0.1007*
H7B	0.19792	-0.01381	0.00532	0.1007*
H7C	0.26488	-0.04643	0.12637	0.1007*
H8A	0.39537	0.39319	0.21227	0.1038*
H8B	0.37436	0.25867	0.05870	0.1038*
H8C	0.37112	0.17444	0.24296	0.1038*
H1W	0.046 (3)	0.824 (9)	0.576 (7)	0.1038*
H2W	0.022 (3)	0.927 (8)	0.447 (7)	0.1038*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0455 (16)	0.0461 (17)	0.0383 (18)	0.0025 (13)	-0.0007 (14)	0.0048 (14)
C1	0.0384 (18)	0.044 (2)	0.0361 (19)	0.0062 (16)	0.0041 (17)	0.0089 (18)
C2	0.051 (2)	0.043 (2)	0.040 (2)	-0.0076 (17)	0.0008 (19)	0.0070 (18)
C3	0.060 (3)	0.039 (2)	0.0300 (17)	0.0022 (17)	0.004 (2)	0.0089 (17)
C4	0.047 (2)	0.051 (2)	0.0353 (19)	0.0013 (17)	0.0013 (19)	0.010 (2)
C5	0.052 (2)	0.051 (2)	0.052 (3)	-0.0056 (18)	-0.006 (2)	0.002 (2)

supplementary materials

C6 C7 C8	0.049 (2) 0.097 (4) 0.052 (2)	0.045 (2) 0.048 (3) 0.082 (3)	0.046 (2) 0.056 (3) 0.074 (3)	0.0024 (18) 0.012 (2) 0.009 (2)	-0.0018 (19) 0.008 (3) 0.007 (3)	0.0034 (18) 0.000 (2) 0.011 (3)
Cl1	0.0555 (4)	0.0492 (5)	0.0475 (4)	0.0042 (4)	-0.0028(6)	0.0044 (6)
Geometric param	neters (Å, °)					
O1W—H2W		0.81 (5)	C4—C5		1.378	(6)
O1W—H1W		0.80 (6)	C5—C6		1.382	(5)
N1—C1		1.477 (4)	C2—H2		0.930	0
N1—H1A		0.8900	С5—Н5	i	0.930	0
N1—H1C		0.8900	С6—Н6)	0.930	0
N1—H1B		0.8900	С7—Н7	'B	0.960	0
C1—C2		1.360 (5)	С7—Н7	C	0.960	0
C1—C6		1.356 (5)	С7—Н7	A	0.960	0
$C_2 - C_3$		1.412 (5)	С8—Н8		0.960	0
$C_3 = C_1$		1.490 (0)	С8—Н8		0.960	0
$C_3 = C_4$		1.332(3) 1.515(5)	Co—116	D .	0.900	0
Cl1…O1W		3.217 (5)	C8…H7	A	2.840	0
Cl1…N1 ⁱ		3.181 (4)	Н1А…Н	12W	2.3400	
Cl1…N1 ⁱⁱ		3.177 (4)	H1A…O	91W	1.8700	
Cl1…O1W ⁱⁱⁱ		3.174 (5)	Н1А…Н	16	2.3100	
Cl1···H1W		2.43 (6)	H1A…H1W		2.480	0
Cl1…H1C ⁱ		2.3100	H1B…Cl1 ^{vi}		2.300	0
Cl1…H1B ⁱⁱ		2.3000	H1B…H2		2.430	0
Cl1…H5 ^{iv}		3.0900	H1C…Cl1 ^{vii}		2.310	0
Cl1…H2W ⁱⁱⁱ		2.36 (5)	H1W…H1A		2.4800	
O1W···Cl1 ^v		3.174 (5)	H1W…C	211	2.43 (6)	
O1W…N1		2.754 (5)	H2…H1	В	2.430	0
O1W…Cl1		3.217 (5)	H2…H7	В	2.3300	
O1W…H1A		1.8700	H2W…C	Cl1 ^v	2.36	(5)
O1W…H6		2.9100	H2W…H	H1A	2.340	0
N1…Cl1 ^{vi}		3.177 (4)	H5…H8.	A	2.330	0
N1…Cl1 ^{vii}		3.181 (4)	H5…Cl1	viii	3.090	0
N1…O1W		2.754 (5)	H6…H1	A	2.310	0
C3···C5 ^{viii}	3.509 (6) H6…C7 ^{xi}		xi	3.080	0	
C3····C4 ^{viii}	3.565 (6) H6…O1W		W	2.910	0	
C4···C3 ^{iv}		3.565 (6) H7A…H8B 2		2.400	0	
C4…C7 ^{iv}		3.570 (7)	3.570 (7) H7A···C8		2.840	0
C5···C3 ^{iv}		3.509 (6)	Н7А…С	3 ^{viii}	2.840	0
C7…C4 ^{viii}		3.570 (7)	Н7А…С	4 ^{viii}	3.100	0
C3···H7A ^{iv}		2.8400	Н7В…Н	2	2.330	0
C4…H7A ^{iv}		3.1000	Н7С…С	8	2.930	0

C5···H7C ^{ix}	3.0500	H7C···C5 ^{xii}	3.0500
C6···H7C ^{ix}	2.9800	H7C···C6 ^{xii}	2.9800
C7…H8B	2.8100	H8A…H5	2.3300
С7…Н8С	2.9500	H8B…C7	2.8100
C7···H6 ^x	3.0800	H8B…H7A	2.4000
C8…H7C	2.9300	H8C····C7	2.9500
H1W—O1W—H2W	110 (6)	С3—С2—Н2	120.00
H1A—N1—H1B	109.00	C1—C2—H2	120.00
H1A—N1—H1C	109.00	С4—С5—Н5	120.00
C1—N1—H1B	109.00	С6—С5—Н5	119.00
C1—N1—H1C	109.00	С5—С6—Н6	121.00
H1B—N1—H1C	109.00	С1—С6—Н6	120.00
C1—N1—H1A	109.00	С3—С7—Н7А	109.00
N1—C1—C2	119.3 (3)	С3—С7—Н7В	109.00
C2—C1—C6	121.8 (3)	H7A—C7—H7B	109.00
N1—C1—C6	118.9 (3)	H7A—C7—H7C	109.00
C1—C2—C3	120.2 (3)	С3—С7—Н7С	110.00
C2—C3—C4	118.1 (3)	H7B—C7—H7C	109.00
C2—C3—C7	119.5 (4)	C4—C8—H8B	109.00
C4—C3—C7	122.4 (3)	C4—C8—H8C	109.00
C3—C4—C8	119.8 (3)	C4—C8—H8A	109.00
C5—C4—C8	120.3 (3)	H8A—C8—H8C	109.00
C3—C4—C5	119.9 (3)	H8B—C8—H8C	109.00
C4—C5—C6	121.1 (3)	H8A—C8—H8B	110.00
C1—C6—C5	119.0 (3)		
N1—C1—C2—C3	178.3 (3)	C2—C3—C4—C8	-179.7 (4)
C6—C1—C2—C3	-0.9 (6)	C7—C3—C4—C5	-179.6 (4)
N1—C1—C6—C5	-178.5 (3)	C7—C3—C4—C8	0.5 (6)
C2—C1—C6—C5	0.6 (6)	C3—C4—C5—C6	-0.4 (6)
C1—C2—C3—C4	0.4 (5)	C8—C4—C5—C6	179.5 (4)
C1—C2—C3—C7	-179.8 (4)	C4—C5—C6—C1	0.0 (6)
C2—C3—C4—C5	0.2 (5)		

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*, –*y*+1, *z*+1/2; (iii) –*x*, –*y*+2, *z*+1/2; (iv) –*x*+1/2, *y*, *z*+1/2; (v) –*x*, –*y*+2, *z*-1/2; (vi) –*x*, –*y*+1, *z*-1/2; (vii) *x*, *y*, *z*-1; (viii) –*x*+1/2, *y*, *z*-1/2; (ix) *x*, *y*+1, *z*; (x) –*x*+1/2, *y*-1, *z*-1/2; (xi) –*x*+1/2; (xi) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A···O1W	0.8900	1.8700	2.754 (5)	174.00
N1—H1B…Cl1 ^{vi}	0.8900	2.3000	3.177 (4)	167.00
N1—H1C…Cl1 ^{vii}	0.8900	2.3100	3.181 (4)	167.00
O1W—H1W…Cl1	0.80 (6)	2.43 (6)	3.217 (5)	174 (7)
O1W—H2W···Cl1 ^v	0.81 (5)	2.36 (5)	3.174 (5)	176 (2)
Symmetry codes: (vi) $-r - v+1 - \frac{1}{2}$ (vii) $r + \frac{1}{2}$	$(v) - r - v + 2 - \frac{1}{2}$)		

Symmetry codes: (vi) -x, -y+1, z-1/2; (vii) x, y, z-1; (v) -x, -y+2, z-1/2.

Fig. 1

O1W

Fig. 2

